Branche
on
Symbolbild Gehirnsignale.

Unser Gehirn verbraucht im Alltag gerade einmal 25 Watt. © ipopba / iStock / Getty Images Plus

| |

Neuroelektronik: Arbeitsweisen des Gehirns auf technische Informationsverarbeitung übertragen

Für Entwicklungen wie das autonome Fahren braucht es technische Systeme, die sehr gut in der Mustererkennung sind und dabei nur wenig Energie verbrauchen. Vorbild könnte hier das Gehirn des Menschen sein. Wie sich Prinzipien aus der biologischen Informationsverarbeitung auf technische Systeme übertragen lassen, untersucht die Christian-Albrechts-Universität zu Kiel (CAU) gemeinsam mit Partnern.

„Bei einzelnen Aufgaben sind Supercomputer besser als wir Menschen, zum Beispiel im Bereich Künstliche Intelligenz. Aber unserer Aufgabenvielfalt im Alltag sind sie nicht gewachsen. Sie können nicht erst Autofahren, dann Musizieren und abends in geselliger Runde eine Geschichte erzählen“, erklärt Hermann Kohlstedt, Professor für Nanoelektronik und Sprecher des SFB 1461.

Außerdem verbrauchen heutige Computer und Smartphones noch immer enorm viel Energie. „Das sind keine nachhaltigen Technologien – unser Gehirn verbraucht im Alltag gerade einmal 25 Watt“, so Kohlstedt weiter.

Ziel des interdisziplinären Forschungsverbunds „Neuroelektronik“ ist es daher, neue elektronische Bauelemente für energieeffizientere Computerarchitekturen zu entwickeln. Dafür erforscht der Zusammenschluss aus Ingenieur-, Lebens- und Naturwissenschaften Funktionsweisen des menschlichen Gehirns und wie sie sich entwickelt haben.

Energieeffiziente Verarbeitung in Kritikalität

Basis der Informationsverarbeitung im Gehirn ist ein Netzwerk aus etwa 86 Milliarden Neuronen. Über Synapsen und Axone geben sie Informationen in Form von Spannungspulsen weiter – entweder gleichzeitig oder unabhängig voneinander („Synchronisation“). Laut einer These der Neurobiologie („the critical brain hypothesis“) verarbeitet unser Gehirn Informationen dann am schnellsten und energieeffizientesten, wenn es sich im „Phasenübergang“ dazwischen befindet. Dieser Zwischenzustand, die sogenannte „Kritikalität“, lässt sich auch mithilfe der Magnetresonanztomographie (MRT) oder Elektroenzephalographie (EEG) nachweisen.

In diesem hochkomplexen Zustand kann das Gehirn besonders sensitiv und vielfältig auf äußere Einflüsse reagieren, weshalb es immer versucht, diesen Zustand zu erreichen. „Das Gehirn ist hier nahe am Chaos: Schon kleine externe Stimuli bringen plötzlich ganze Ensembles von Neuronen zum Feuern. Information breiten sich lawinenartig aus und können so besonders leicht übertragen werden, auch in weit auseinanderliegende Gehirnbereiche“, erklärt Kohlstedt. Das ermöglicht eine breite Palette von Reaktionen.

In ihrer aktuellen Publikation gingen die Wissenschaftler der CAU der Frage nach, wie neuronale und auch künstliche Netzwerke diesen Zustand der Kritikalität erreichen. Bisher hatte man angenommen, dass es sich um eine „selbstorganisierte Kritikalität“ handelt, für die allein Mechanismen im Gehirn verantwortlich sind. „Wir konnten jedoch erstmals zeigen, dass auch äußere Einflüsse, also die Umwelt selbst, dazu führen, dass dieser Zustand Netzwerken wie dem Gehirn ‚aufgeprägt‘ wird“, so Erstautor Dr. Petro Feketa, Mitglied im SFB 1461 und in der Arbeitsgruppe Automatisierungs- und Regelungstechnik an der CAU.

Anpassung an wandelnde Umwelt

Dafür wendete das Team mathematische Modellierungen in einem künstlichen Netzwerk von nichtlinearen Oszillatoren an. Diese Schaltungen erzeugen – ähnlich der Neuronen im neuronalen Netzwerk – Spannungsimpulse, die sich ebenfalls synchronisieren können. Außerdem können sie ihre Verbindungen untereinander verändern.

Das Forschungsteam simulierte, wie sich die Oszillatoren durch die Interaktion mit der Umwelt im Laufe der Zeit verbinden, um Aufgaben möglichst schnell und effizient zu lösen. Immer wieder stellte sich in diesem Netzwerk ein Zustand der Kritikalität ähnlich im Gehirn ein. „Das war für uns besonders überraschend, weil sich das Netzwerk vorher nicht in diesem Zustand befand und es ursprünglich auch nicht unsere Absicht war, ihn zu erreichen“, so Feketa.

„Vom Standpunkt der Evolutionsbiologie ist dieses Ergebnis durchaus nachvollziehbar. Unsere Umwelt ist so vielfältig, dass die Struktur und innere Dynamik unseres Gehirns im Laufe der Zeit so geformt wurde, dass der Zustand der Kritikalität eine maximale Lösungsbandbreite für unterschiedliche Aufgabenstellungen liefert“, so Prof. Dr. Thomas Meurer, Leiter des Lehrstuhls für Automatisierungs- und Regelungstechnik der CAU.

Das Gehirn hat seinen Zustand der Kritikalität also an Einflüsse und die steigenden Anforderungen der sich immer stärker wandelnden Umwelt angepasst. „Umgangssprachlich könnte man sagen: Unser Gehirn wächst mit seinen Aufgaben – und zwar stärker als man vorher gedacht hatte“, fasst Kohlstedt zusammen.

Quelle: Christian-Albrechts-Universität zu Kiel (CAU)


Originalpublikation: Feketa, P., Meurer, T. & Kohlstedt, H.; Structural plasticity driven by task performance leads to criticality signatures in neuromorphic oscillator networks; Sci Rep, 2022; doi: 10.1038/s41598-022-19386-z

Newsletter abonnieren

Newsletter Icon MTA Blau 250x250px

Erhalten Sie die wichtigsten MT-News und Top-Jobs bequem und kostenlos per E-Mail.

Mehr zum Thema

Darstellung von RNA
Gehirn mit Schlaganfall

Das könnte Sie auch interessieren

Rote Blutkörperchen
Virus mit RNA-Molekül
Gebrochenes Herz an Betonwand