Branche
on
3D-animierte Darstellung von Spermien, die eine Eizelle befruchten.

Bei der Verschmelzung von Ei- und Samenzelle erfolgt eine epigenetische Reorganisation der DNA. © Christoph Burgstedt / iStock / Getty Images Plus

|

Zellkern: DNA-Organisation im Embryo zeigt Anpassungsfähigkeit bei Fehlern

Ein internationales Forschungsteam hat erstmals detailliert gezeigt, wie sich die räumliche Organisation des Erbguts im Zellkern früher Embryonen in den ersten Stunden nach der Befruchtung entwickelt. Überraschenderweise zeigen Embryonen eine hohe Flexibilität bei der Korrektur von Störungen in diesem Prozess. Die Studie zeigt, dass nicht ein einzelner Hauptregulator diese Kernorganisation steuert. Stattdessen sorgen mehrere redundante Mechanismen für eine robuste und anpassungsfähige Kernarchitektur und ermöglichen es Embryonen, Fehler in der anfänglichen Organisation ihres Zellkerns zu korrigieren.

Wenn Ei- und Samenzelle verschmelzen, beginnt eine umfassende Reorganisation der DNA im Zellkern. Eine zentrale Rolle spielt dabei die Epigenetik, die die Genaktivität durch chemische Modifikationen an der DNA und ihren assoziierten Proteinen reguliert.

Mechanismen der Kernorganisation

„Wir wollten verstehen, wie diese epigenetischen Programme die Genaktivität beeinflussen und sicherstellen, dass die Zelle ihre entwicklungsbiologischen Aufgaben korrekt ausführt“, erklärt Studienleiterin Prof. Maria-Elena Torres-Padilla, Direktorin des Instituts für Epigenetik und Stammzellen bei Helmholtz Munich und Professorin an der Fakultät für Biologie der Ludwig-Maximilians-Universität (LMU).

„Bisher war nicht bekannt, ob ein einziger zentraler Mechanismus die Kernorganisation nach der Befruchtung steuert. Unsere Ergebnisse zeigen, dass dafür mehrere parallele regulatorische Wege zuständig sind, die sich gegenseitig verstärken.“

Kernorganisation infrage gestellt

Um die Mechanismen dieser Reorganisation zu entschlüsseln, führten die Forschenden ein so genanntes Störungs-Screening durch. Dabei veränderten sie gezielt epigenetische Faktoren in frühen Mausembryonen, um deren Einfluss auf die Kernorganisation zu analysieren. Zur Kartierung der epigenetischen Veränderungen nutzten die Forschenden modernste molekularbiologische Techniken (siehe Infokasten unten). Die Analysen deckten mehrere redundante regulatorische Mechanismen auf, die an der Kernorganisation beteiligt sind.

Darüber hinaus ergaben die Experimente, dass – entgegen bisheriger Annahmen – die Genaktivität nicht streng von der räumlichen Position im Zellkern bestimmt wird. „Die Position von Genen innerhalb des Zellkerns korrelierte nicht immer mit ihrer Aktivität“, sagt Mrinmoy Pal, Erstautor der Publikation und Doktorand am Institut für Epigenetik und Stammzellen. Manche Gene blieben aktiv, obwohl sie sich in eine Region des Zellkerns verschoben, die traditionell als inaktiv gilt, während eine ähnliche Verlagerung in anderen Fällen zu einer drastischen Reduktion der Genexpression führte. „Das stellt das klassische Modell der Kernorganisation und der Genomfunktion infrage“, so Pal.

Embryonen korrigieren Fehler

Noch überraschender war die Erkenntnis, dass frühe Embryonen Störungen in der Kernorganisation selbst korrigieren können. War die Kernorganisation vor der ersten Zellteilung gestört, konnte sie während des zweiten Zellzyklus wiederhergestellt werden. Dies deutet darauf hin, dass frühe Embryonen nicht nur widerstandsfähig sind, sondern auch Mechanismen besitzen, um Fehler in ihrer anfänglichen Kernorganisation zu kompensieren.

Die Forschenden entdeckten, dass dieser Prozess durch epigenetische Markierungen reguliert wird, die von der mütterlichen Eizelle vererbt werden. Falls diese mütterlichen Signale gestört sind, kann der Embryo allerdings alternative epigenetische Programme aktivieren, um die korrekte Kernorganisation dennoch wiederherzustellen – selbst, wenn diese Programme möglicherweise nicht von der Mutter stammen. Dies zeigt, dass Embryonen unterschiedliche Ausgangspunkte für ihre Entwicklung nutzen können, um Fehlentwicklungen zu verhindern.

Relevanz für Altern und Krankheit

Die Studienergebnisse könnten weitreichende Auswirkungen haben: Bei Erkrankungen wie Progerie, einer genetischen Störung, die zu vorzeitiger Alterung führt, treten erhebliche Störungen in der mit der Kernlamina assoziierten DNA auf. Darüber hinaus sind verschiedene Krebsarten mit Veränderungen in der räumlichen Organisation des Genoms verbunden. „Unsere Ergebnisse könnten helfen, diese Mechanismen besser zu verstehen und langfristig neue Ansätze zu entwickeln, um epigenetische Programme gezielt zu beeinflussen und Krankheitsverläufe zu verbessern“, sagt Torres-Padilla.

Quelle: Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH)


Originalpublikation: Mrinmoy Pal et al.; The establishment of nuclear organization in mouse embryos is orchestrated by multiple epigenetic pathways; Cell, April 2025, DOI: 10.1016/j.cell.2025.03.044

Newsletter abonnieren

Newsletter Icon MTA Blau 250x250px

Erhalten Sie die wichtigsten MT-News und Top-Jobs bequem und kostenlos per E-Mail.

Mehr zum Thema

Animierte Darstellung eines Mitochondriums.
Menschliche Zellen unter dem Mikroskop.

Das könnte Sie auch interessieren

Blutproben in Reagenzgläsern.
Ein Mensch steht auf einer Waage, davor ein Maßband.
3D-animierte Darstellung von menschlichen Zellen mit Zellkern.