Branche
on
Foldamere tricksen Virus aus

Foldamere lassen sich mithilfe einer Art Origami-Technik verformen. © ranii / Pixabay

| | | |

Nachahmung: Foldamere tricksen Virus aus

Künstlich geschaffene Moleküle ahmen nicht nur die Struktur ihrer natürlichen Vorbilder nach: Sie können auch deren Funktion übernehmen und diese darin sogar übertreffen, wie Chemiker Ivan Huc von Ludwig-Maximilians-Universität München (LMU) erstmals am Beispiel einer künstlichen DNA-Sequenz zeigt.

Ivan Huc ahmt in seiner Forschung die Prinzipien der Natur nach, und das auf kleinster Ebene. Der Chemiker schafft mit seiner Arbeitsgruppe „Biomimetic Supramolecular Chemistry“ an der LMU künstliche Moleküle, die sich mithilfe einer Art Origami-Technik nach dem Abbild ihrer natürlichen Vorbilder formen lassen, Foldamere nennt er diese.

Nun ist es Ivan Huc gelungen, Eigenschaften der Oberfläche einer DNA-Doppelhelix so nachzuahmen, dass Proteine mit dem Imitat interagieren. Darüber berichtet der Chemiker, der bis Sommer 2017 an der Universität Bordeaux (Frankreich) forschte, aktuell.

In der Studie blockierten die künstlichen DNA-Imitate verschiedene Enzyme von Viren, darunter die HIV Integrase, durch die der HI-Virus sein Genom in die Wirtszelle einschleust. Damit könnte seine Forschung ganz neue therapeutische Ansatzpunkte eröffnen. Hucs aktuelle Veröffentlichung baut vor allem auf zwei früheren Arbeiten auf, die ebenfalls in diesem Jahr erschienen sind.

Molekül nach Baukasten-Prinzip modellieren

B-DNA-Doppelhelix und ein Foldamer © Ivan Huc / LMUDie Abbildung zeigt eine B-DNA-Doppelhelix und ein Foldamer, das einen einzelnen Helixstrang nachahmt. © Ivan Huc / LMU

Darin zeigte er, durch welche Interaktionsmuster künstliche Moleküle organische Formen wie die Helixstruktur annehmen können und unter welchen Umständen Ribosomen künstlichen Molekülen gegenüber tolerant sind. „Die Form bestimmt die Funktion“, erklärt Ivan Huc seinen Ansatz. In der nun neu erschienenen Studie hat der Chemiker als Basis ein künstliches Molekül entwickelt, das sich schraubenförmig falten und nach einer Art Baukasten-Prinzip vielfach modellieren lässt.

So konnte Ivan Huc Oberflächeneigenschaften der natürlichen DNA-Doppelhelix imitieren. Das Imitat ist so gut geworden, dass zwei Enzyme, darunter die HIV Integrase, auf die falsche DNA hereinfallen und dadurch blockiert werden können.

Damit dies auch dann funktioniert, wenn die Enzyme sowohl die künstliche als auch die echte DNA zur Wahl haben, muss Hucs Schöpfung die Natur quasi übertreffen: „Wenn die Enzyme auch unter konkurrierenden Bedingungen an das Foldamer binden sollen, muss das Imitat besser sein als die DNA selbst“, erläutert Huc.

Viele Variationsmöglichkeiten

Tatsächlich ist dies in der Studie gelungen: Die Bindung der HIV Integrase an das Foldamer war stärker als an die DNA selbst. „Obwohl das Design auf die Ähnlichkeit zur DNA abzielt, verdankt das Foldamer seine wertvollsten Eigenschaften gerade seinen Unterschieden zur DNA“, betont Huc. Das Baukastenprinzip, nach dem sich die künstlichen DNA-Sequenzen nach Belieben gestalten lassen, eröffnet viele Variationsmöglichkeiten.

In der vorliegenden Studie testete Ivan Huc die Funktion am Beispiel von Enzymen, die an eine beliebige Stelle der DNA binden. Es wäre jedoch auch denkbar, künstliche DNA-Abschnitte zu entwickeln, um Enzyme zu blockieren, die nur an bestimmte DNA-Sequenzen binden.

Quelle: Ludwig-Maximilians-Universität München (LMU)


Publikationen:

Newsletter abonnieren

Newsletter Icon MTA Blau 250x250px

Erhalten Sie die wichtigsten MT-News und Top-Jobs bequem und kostenlos per E-Mail.

Mehr zum Thema

Rote Blutkörperchen
DNA

Das könnte Sie auch interessieren

Lunge
Corona-Viren
Rote Blutkörperchen