Herpesvirusinfektionen sind weltweit verbreitet und verursachen erhebliche gesundheitliche und auch mentale Belastungen sowie lebensbedrohliche Komplikationen bei immungeschwächten Menschen. Die neue Studie konzentriert sich auf das Herpes simplex Virus 1, den Erreger von Lippenherpes, und das Pseudorabies-Virus (PrV), ein Modellvirus für humane Herpesinfektionen.
Die Forschenden haben verschiedene Strukturen des herpesviralen Kernaustrittskomplexes (nuclear egress complex, NEC) an der inneren Kernmembran identifiziert. Die NEC-Proteinhülle vermittelt den Transfer von Herpesvirus-Kapsiden (ikosaedrischen Proteinbehältern, die das Herpesvirus-Genom enthalten) in den Raum um den Zellkern und deren anschließende Freisetzung ins Zellplasma. Das Forschungsteam nutzt modernste bildgebende Techniken wie die Kryo-Elektronentomographie, um die Schnittstelle zwischen dem NEC und der transportierten Virus-Kapsid-Oberfläche in infizierten Zellen strukturell zu charakterisieren.
Strukturelle Flexibilität des NEC
Diese Einblicke im Nanometerbereich zeigen, dass der NEC eine Schlüsselrolle beim Transport von Herpesvirus-Kapsiden spielt, ohne dabei die Kernhülle zu beschädigen. Die Ergebnisse deuten auf eine bemerkenswerte strukturelle Flexibilität des NEC hin und legen nahe, dass der Mechanismus nicht starr, sondern anpassungsfähig ist.
Dr. Vojtěch Pražák, Postdoktorand in der Abteilung Strukturelle Zellbiologie der Viren am LIV und einer der Hauptautoren der Studie, veranschaulicht: „Wie bekommt man einen Ball durch ein doppelt verglastes Fenster, ohne es zu zerbrechen? Wir können es nicht, aber Herpesviren haben herausgefunden, wie man das Äquivalent davon schafft – durch die Kernmembranen zu gelangen, ohne sie zu zerreißen.
Entkommen aus dem Zellkern
Dies ist eine sehr nützliche Fähigkeit für sie, da ein beschädigter Kern dem Immunsystem signalisieren würde, dass etwas nicht stimmt.“ „Unsere Arbeit zeigt, dass die Bildung einer NEC-Hülle an der Kernmembran der Schlüsselmechanismus ist, durch den Herpesviren aus dem Zellkern entkommen und dann ihren Zusammenbau im Zytosol der Wirtszelle abschließen“, erklärt Yuliia Mironova, Doktorandin in der Abteilung Strukturelle Zellbiologie der Viren am LIV und eine weitere Hauptautorin der Studie.
„Die detaillierte Charakterisierung dieser Prozesse könnte neue Wege für die gezielte Unterbrechung der Virusvermehrung eröffnen“, ergänzt Mironova. Frühere Studien haben die Bedeutung des NEC für den viralen Lebenszyklus hervorgehoben. Diese Studie liefert die erste detaillierte strukturelle Analyse der NEC-Viruspartikel-Schnittstelle in der zellulären Umgebung.
Neue Ansatzpunkte für antivirale Therapien
Prof. Dr. Kay Grünewald, Leiter der Abteilung Strukturelle Zellbiologie der Viren am LIV und Stellvertretender Wissenschaftlicher Direktor des Centre for Structural Systems Biology, betont: „Wir haben untersucht, wie Proteine in NEC-Strukturen unterschiedlicher Kurvatur in Zellen interagieren und so die Flexibilität dieser Interaktionen identifiziert. Dadurch konnten wir zeigen, wie die lokale Kernmembranausstülpung aktiviert wird. Überraschenderweise fanden wir auch, dass die Interaktion zwischen Kapsid und NEC nicht auf bestimmte Positionen der Kapside beschränkt ist.“
Insgesamt bieten die neuen Erkenntnisse dieser Studie vielversprechende Perspektiven für die Bekämpfung von Herpesvirusinfektionen. Die strukturellen Einblicke im Nanomaßstab des Forschungsteams legen den Grundstein für das Verständnis des komplexen Kernaustrittsmechanismus, der allen Herpesviren gemeinsam ist. Dementsprechend bieten die Ergebnisse auch für andere humanpathogene Herpesviren relevante und spannende Ansatzpunkte für die Entwicklung neuer antiviraler Therapiemöglichkeiten.
Quelle: Leibniz-Institut für Virologie (LIV)
Originalpublikation: Vojtěch Pražák et al.; Molecular plasticity of herpesvirus nuclear egress analysed in situ; Nature Microbiology, 2024, DOI: 10.1038/s41564-024-01716-8