Branche
on
Atherosklerose

Herz-Kreislauf-Erkrankungen durch Atherosklerose sind weltweit die häufigsten Todesursachen. © Mohammed-Haneefa-Nizamudeen / iStock / Getty Images Plus

|

Adaptive Immunantwort: Welche Rolle B-Zellen bei Atherosklerose spielen

LMU-Forschende haben ein Protein identifiziert, das an der Regulation von Immunzellen beteiligt ist und die Entstehung von Atherosklerose bremsen kann.

Herz-Kreislauf-Erkrankungen durch Atherosklerose sind weltweit die häufigsten Todesursachen. Bei der Krankheit lagert der Körper Cholesterinester und andere Fette in die innere Wandschicht arterieller Blutgefäße ein. Dadurch bilden sich Plaques, die den Blutfluss so stark verringern können, dass die Sauerstoffversorgung mancher Organe beeinträchtigt wird. Mittlerweile wissen Forschende, dass bei Atherosklerose chronisch-entzündliche Vorgänge ablaufen.

Zielstruktur für innovative Therapien

B-Zellen als Teil der erworbenen (adaptiven) Immunantwort scheinen dabei eine wichtige Rolle zu spielen. Sie gehören zu den weißen Blutkörperchen und vermitteln über Antikörper sowohl schützende als auch schädigende Wirkungen. Sprich: Sie können die Atherosklerose fördern oder hemmen. Doch wie genau reguliert der Körper, welcher Prozess zum Tragen kommt?

Forschende um Prof. Dr. Sabine Steffens vom Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten (IPEK) haben nun ein Protein identifiziert, das an der Steuerung der adaptiven Immunantwort bei Atherosklerose entscheidend beteiligt ist. Dieses Protein könnte sich nach Ansicht der Wissenschaftler als Zielstruktur für innovative Therapien eignen. Wichtige Teile der Studie wurden vom DFG Sonderforschungsbereich 1123 (Sprecher: Prof. Christian Weber) gefördert, der erst im Mai dieses Jahres für weitere vier Jahre verlängert wurde.

Einfluss auf atherosklerotische Erkrankungen

„Wir wollten besser verstehen, wie B-Zellen atherosklerotische Erkrankungen beeinflussen, um perspektivisch neuartige, auf B-Zellen ausgerichtete Therapien für diese lebensbedrohliche Erkrankung zu entwickeln“, sagt Steffens zu den Zielen ihres Forschungsprojekts. Im Mittelpunkt ihres Interesses stand der Rezeptor GPR55, das chemische Signale von außerhalb in das Innere von Zellen weiterleitet.

B-Zellen der Milz von Mäusen produzieren das Molekül in großem Umfang. Für ihre Studie untersuchten die Wissenschaftlerinnen und Wissenschaftler Mausmodelle für Atherosklerose. Erhielten die Mäuse ein spezielles Futter, um Atherosklerose auszulösen, wurde bereits nach einem Monat der Rezeptor hochreguliert, also in einem recht frühen Krankheitsstadium. Mäuse, die kein GPR55 herstellen können, entwickelten im Vergleich zum Wildtyp größere atherosklerotische Plaques.

Ansatzpunkt für neuartige Therapien

In diesen Mäusen wurden ohne GPR55 demnach die B-Zellen übermäßig aktiviert und die entzündlichen Vorgänge gefördert. Bei der Untersuchung menschlicher atherosklerotischer Plaques zeigte sich, dass in unstabilen Plaques mit hohem Risiko einen Schlaganfall auszulösen, weniger Rezeptor vorhanden war als bei stabilen Plaques. „Dieser Befund deutet darauf hin, dass sich die Expression des Proteins im Verlauf der Krankheit verändert“, berichtet Steffens.

„Unsere Ergebnisse deuten auf eine protektive Rolle des B-Zell-GPR55-Signalwegs bei Atherosklerose hin, was potenziell auch auf Relevanz für die menschliche Pathophysiologie schließen lässt“, sagt Steffens. Sie hofft: „GPR55 könne der Ansatzpunkt neuartiger Therapien sein.“ Ob es gelingt, mit kleinen Molekülen als Arzneistoffen die Bildung von GPR55 anzuregen, müssen weitere Studien zeigen.

Quelle: Ludwig-Maximilians-Universität München


Originalpublikation: Raquel Guillamat-Prats et al.; GPR55 in B cells limits atherosclerosis development and regulates plasma cell maturation; Nature Cardiovascular Research 1, 2022, DOI 10.1038/s44161-022-00155-0

Newsletter abonnieren

Newsletter Icon MTA Blau 250x250px

Erhalten Sie die wichtigsten MT-News und Top-Jobs bequem und kostenlos per E-Mail.

Mehr zum Thema

Herz-Kreislauf-Erkrankungen
Athersoklerose

Das könnte Sie auch interessieren

Bakterien
Petrischale mit Blutmedium
Wissenschaftler mit Mikroskop