Branche
on
Zusammensetzung von Transportvesikeln

Um die Zusammensetzung der COPI- und COPII-Vesikel erstmals genauer untersuchen zu können, kombinierten die Wissenschaftler zwei Ansätze. © Konstantin Kolosova / Pixabay

| | |

An Ort und Stelle: Zusammensetzung von Transportvesikeln

Spezielle Transporter sorgen dafür, dass Proteine an die Stellen gebracht werden, an denen sie in der Zelle gebraucht werden. Mit der Kombination innovativer Untersuchungstechniken ist es Biochemikern der Universität Heidelberg gelungen, zwei dieser sogenannten Transportvesikel, die COPI- und COPII-Vesikel, erstmals umfassend zu analysieren.

Ein grundlegender zellulärer Mechanismus sorgt dafür, dass Proteine an die Stellen transportiert werden, an denen sie in den Zellen gebraucht werden. Für den Transport sind sogenannte Vesikel verantwortlich. Ihre Zusammensetzung zu bestimmen, war bislang schwierig, nicht zuletzt aufgrund ihrer kurzen Lebensdauer.

Mit der Kombination innovativer Untersuchungstechniken ist es Biochemikern der Universität Heidelberg gelungen, zwei dieser Transportmittel, die COPI- und COPII-Vesikel, erstmals umfassend zu analysieren. Etwa ein Drittel aller Proteine, die in unseren Zellen hergestellt werden, beginnen ihr Leben im endoplasmatischen Retikulum, das allgemein als Proteinfabrik dient.

Die meisten von ihnen werden jedoch an anderen zellulären Orten benötigt und müssen dorthin transportiert werden. Um einen „Stau“ zu vermeiden, haben Zellen Transportvesikel entwickelt, die wie der öffentliche Nahverkehr funktionieren: Die Passagiere, die Proteinfracht müssen das passende Ticket vorweisen, um in den richtigen Bus, eine bestimmte Art von Vesikel,  zu steigen und an den richtigen Zielort zu gelangen.

Vesikel-Rekonstitutionsverfahren

Seit Jahrzehnten ist bekannt, dass kleine Vesikel, die sich an der Oberfläche von Organellen bilden, spezifische Proteine verpacken und zu anderen Bereichen der Zelle oder zur Zelloberfläche transportieren. „Mutationen in Genen, die an diesem vesikulären Transport beteiligt sind, führen oft zu Krankheiten. Daher ist es entscheidend zu verstehen, welche Proteine von welchen Vesikeln transportiert werden. Leider haben Transportvesikel eine kurze Lebensdauer und sind schwierig zu reinigen, sind also schwer zu analysieren“, erläutert Prof. Dr. Felix Wieland, der die Forschungsarbeiten am Biochemie-Zentrum der Universität Heidelberg (BZH) geleitet hat.

Um die Zusammensetzung der COPI- und COPII-Vesikel erstmals genauer untersuchen zu können, kombinierten die Wissenschaftler zwei Ansätze. Ein Vesikel-Rekonstitutionsverfahren machte es möglich, große Mengen von Vesikeln zu produzieren und zu reinigen. Die Forscher verwendeten außerdem in Zellkulturen eine stabile Isotopenmarkierung mit Aminosäuren. Dieses Verfahren, kurz SILAC erlaubt es, verschiedene Proteinmengen mithilfe der Massenspektrometrie präzise zu bestimmen.

„Da wir in der Lage waren, bestimmte Arten von Vesikeln zu generieren und deren eigenen Proteingehalt zu analysieren, konnten wir einen Katalog der Proteinladung für COPI- und COPII-Vesikel definieren. Eine wichtige Erkenntnis ist, dass die Subtypen von COPII-Vesikeln auf den Transport bestimmter Arten von Proteinen spezialisiert zu sein scheinen“, betont Dr. Frank Adolf, der Erstautor der Studie.

Die Wissenschaftler hoffen nun, mit diesem Ansatz besser zu verstehen, wie Mutationen im Zusammenhang mit dem vesikulären Transport zu Krankheiten führen. Als Mitglied des Exzellenzclusters CellNetworks der Ruperto Carola beschäftigt sich Prof. Wieland am Biochemie-Zentrum der Universität Heidelberg mit den Mechanismen des vesikulären Transports und der Protein-Lipid-Interaktionen.

Quelle: Universität Heidelberg


Originalpublikation: F. Adolf et al., Proteomic Profiling of Mammalian COPII and COPI Vesicles, Cell Reports 2019, doi: 10.1016/j.celrep.2018.12.041

Newsletter abonnieren

Newsletter Icon MTA Blau 250x250px

Erhalten Sie die wichtigsten MT-News und Top-Jobs bequem und kostenlos per E-Mail.

Mehr zum Thema

Darstellung eines menschlichen Gehirns mit Nervenzellen, das unter Alzheimer leidet.
3D-animierte Darstellung von Bakterien im Darm.

Das könnte Sie auch interessieren

CAR-T-Zelltherapie beim diffusen großzelligen B-Zell-Lymphom (DLBCL) - Nahaufnahme 3D-Illustration.
Darstellung eines menschlichen Gehirns mit Nervenzellen, das unter Alzheimer leidet.
Gestreutes weißes Amphetaminpulver/Kokain.