Mit einem Anteil von bis zu 40 Prozent ist Cholesterin essentiell für die Struktur, die Elastizität und die vielfältigen Funktionen von Zellmembranen. Zellmembranen dienen als Barrieren, die das Zellinnere vom äußeren Umfeld trennen und den selektiven Transport von Stoffen in die und aus der Zelle regulieren. „Frühere Experimente haben gezeigt, dass die Hauptbausteine der Membran, die Lipide, durch das Cholesterin komprimiert werden“, sagt Prof. Dr. Rainer Böckmann, Leiter der Arbeitsgruppe Computational Biology am Department Biologie der FAU. „Dadurch wird die Membran dicker und weniger durchlässig.“
Bedeutung für eine Vielzahl biologischer Prozesse
Die Forscher stellten mittels Computersimulationen fest, dass die Wirkung von Cholesterin von der Lipidzusammensetzung der Membran abhängt: In gesättigten Membranen bewirkt es eine Versteifung, in ungesättigten Membranen erhöht es die Flexibilität. Dies führt zu einer scheinbar widersprüchlichen Situation, in der die Membranen gleichzeitig dicker und weicher werden. Die vom Zentrum für Nationales Hochleistungsrechnen Erlangen (NHR@FAU) unterstützten Computersimulationen zeigen, dass sich dieses Phänomen durch die erhöhte Beweglichkeit des Cholesterins in ungesättigten Membranen erklären lässt.
Diese Entdeckung hat weitreichende Bedeutung für eine Vielzahl biologischer Prozesse an der Zellmembran. „Durch die Studie verstehen wir besser, wie Cholesterin die Zellkommunikation und die Stoffaufnahme beeinflusst“, erklärt Rainer Böckmann. Auch wenn es sich hier um Grundlagenforschung handelt, könnte der entdeckte Mechanismus wichtige Implikationen für die Biotechnologie haben, insbesondere bei der Entwicklung von künstlichen Membranen mit verbesserten physikalischen Eigenschaften.
Quelle: Friedrich-Alexander-Universität Erlangen-Nürnberg
Originalpublikation: Matthias Pöhnl et al.; Nonuniversal impact of cholesterol on membranes mobility, curvature sensing and elasticity; nature communications, 2023, DOI: 10.1038/s41467-023-43892-x