Branche
on
Netzstruktur umhüllt Gehirn.

Die Forschenden haben herausgefunden, dass die Matrix des Nervensystems wesentlich plastischer ist, als bisher gedacht. © metamorworks / iStock / Getty Images Plus

| |

Hirnforschung: Umbau-Mechanismus der extrazellulären Matrix aufgedeckt

Die extrazelluläre Matrix (EZM) bildet im erwachsenen Gehirn ein Gitter, das die Nervenzellen und die Synapsen umhüllt. Die häufigen strukturellen Veränderungen an Synapsen erfordern fortlaufend Umbauprozesse dieser Gitterstruktur. Forschende am Göttinger Exzellenzcluster „Multiscale Bioimaging: Von Molekularen Maschinen zu Netzwerken erregbarer Zellen“ (MBExC) beschreiben nun erstmals einen Umbau-Mechanismus, der auf Recycling einzelner Bestandteile der EZM basiert und eng mit der synaptischen Aktivität verbunden ist.

Die Erkenntnis der Forschenden ist auch bedeutsam für die klinische Forschung, da eine Vielzahl von Gehirnerkrankungen mit Veränderungen der EZM einhergehen. Im Gehirn bildet die extrazelluläre Matrix ein stabiles, netzartiges Gerüst, das die Nervenzellen und Synapsen umhüllt und wichtige Leitfunktionen erfüllt. Die außergewöhnliche Langlebigkeit ihrer Bestandteile verleiht der extrazellulären Matrix eine einzigartige Dauerhaftigkeit. Diese stabilisiert die neuronalen Schaltkreise, schränkt damit aber auch deren Anpassungsfähigkeit durch Umbau (Plastizität) ein.

Um die Funktion des Nervensystems dauerhaft zu gewährleisten, verfügt die EZM Erwachsener dennoch über eine gewisse Umbaufähigkeit. Dabei spalten zinkhaltige Enzyme, sogenannte Matrix-Metalloproteinasen, das Gitter in der Nähe der Synapsen und ermöglichen die Einbettung neugebildeter Bestandteile. Dies ist ein für die Zelle recht kostspieliger Prozess.

Strukturelle Veränderungen an Synapsen kommen erstaunlich häufig vor. Die Frequenz liegt dabei auf einer Zeitskala von Minuten bis Stunden. Die Hypothese der Göttinger Wissenschaftler*innen: Es muss ein zusätzlicher, weniger energie-aufwändiger Umbaumechanismus existieren, der auf Recycling anstelle von Neubildung der EZM-Komponenten setzt und eng mit der synaptischen Aktivität verbunden ist. Ein solcher Mechanismus würde der ECM die Flexibilität verleihen, die für häufige synaptische Veränderungen erforderlich ist.

Untersuchungen mit Fluoreszenzbildgebung und Sekundärionen-Massenspektrometrie

Das Team konzentrierte sich auf einen bekannten Bestandteil der extrazellulären Matrix, das Glykoprotein TNR, um ihre Hypothese von der Existenz eines Recycling-Mechanismus zu prüfen. Die Kombination aus superauflösender Fluoreszenzbildgebung und Sekundärionen-Massenspektrometrie brachte die entscheidenden Einblicke. Die Wissenschaftler*innen konnten zeigen, dass sich ein Pool mobiler TNR-Moleküle an den Synapsen anreichert und über einen überraschend langen Zeitraum von etwa drei Tagen in die EZM ein- und wieder austritt.

Mehr noch: Die TNR-Moleküle werden im Körper von Nervenzellen bis zum Golgi-Apparat transportiert. Dort werden sie, so vermuten die Forschenden, durch Anhängen von Kohlenhydraten (Glykosylierung) umgebaut, um dann erneut zu den Synapsen transportiert zu werden. Zudem konnte eine Verbindung zwischen dem Ausmaß des TNR-Recyclings und der synaptischen Aktivität hergestellt werden.

„Unsere Ergebnisse belegen, dass die extrazelluläre Matrix im Nervensystem wesentlich plastischer ist als bisher angenommen. Wir nehmen an, dass dieser Mechanismus nicht auf das TNR-Protein beschränkt ist, sondern auch andere Bestandteile der EZM betrifft“, sagt Erstautorin Dr. Tal Dankovich. „Die Erkenntnisse dieser Studie eröffnen ein völlig neues Untersuchungsfeld, das sich nicht nur für das Verständnis der EZM-Regulierung im Gehirn, sondern auch für die Plastizität und Stabilität des Gehirns im Allgemeinen als wichtig erweisen dürfte“, sagt Prof. Dr. Rizzoli, Seniorautor der Studie.

Es ist bekannt, dass eine Vielzahl von Gehirnerkrankungen mit ECM-Veränderungen einhergehen. Daher dürften sich diese Erkenntnisse aus der Grundlagenforschung in Zukunft auch als bedeutsam für die klinische Forschung erweisen.

Quelle: Universitätsmedizin Göttingen


Originalpublikation: Dankovich TM et al.; Extracellular matrix remodeling through endocytosis and resurfacing of Tenascin-R.; Nature Communications, 2021; DOI: 10.1038/s41467-021-27462-7

Newsletter abonnieren

Newsletter Icon MTA Blau 250x250px

Erhalten Sie die wichtigsten MT-News und Top-Jobs bequem und kostenlos per E-Mail.

Mehr zum Thema

Darstellung von RNA
Gehirn mit Schlaganfall

Das könnte Sie auch interessieren

Mikroglienzellen schädigen die Myelin-Hülle von Neuronenaxonen
Antikörper
Mikrobiologische Kultur des Hefepilzes Candida auris