Branche
on
Mikroskopkopf

Forschende haben unter anderem Sulfatreduzierer untersucht. © Kkolosov / iStock / Getty Images PlusF

| |

Umwelt und Gesundheit: Vielfalt umweltrelevanter Mikroorganismen größer als gedacht

Ein Team von Forschenden des Leibniz-Instituts DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH und der Technischen Universität Braunschweig konnte jetzt in Zusammenarbeit mit der Universität Wien und der University of Wisconsin, USA, zeigen, dass in der Natur eine unglaublich hohe Biodiversität umweltrelevanter Mikroorganismen vorherrscht. Eine Vielfalt, die das Bekannte mindestens um das 4,5-fache übersteigt.

Die verborgene Welt der Mikroorganismen fällt häufig außer Betracht – obwohl viele klimarelevante Prozesse von Mikroorganismen beeinflusst werden, oft gepaart mit einer unglaublichen Artenvielfalt innerhalb der Gruppen der Bakterien und Archaea („Urbakterien“).

Sulfat-reduzierende Mikroorganismen setzen, zum Beispiel, ein Drittel des organischen Kohlenstoffs in marinen Sedimenten zu Kohlendioxid um. Dabei entsteht toxischer Schwefelwasserstoff. Positiv ist, dass letzterer rasch durch schwefeloxidierende Mikroorganismen als Energiequelle genutzt und unschädlich gemacht wird.

„Auch in Seen, Mooren und sogar im menschlichen Darm spielen diese Prozesse eine große Rolle, um Natur und Gesundheit im Gleichgewicht zu halten“, sagt Prof. Michael Pester, Leiter der Abteilung Mikroorganismen des Leibniz-Instituts DSMZ und Professor am Institut für Mikrobiologie der TU Braunschweig. In einer Studie konnte der Stoffwechsel eines dieser neuartigen Mikroorganismen näher beleuchtet werden und brachte eine bisher unerreichte Multifunktionalität zu Tage.

Auswirkungen auf Ökosysteme

Der Schwefelkreislauf ist einer der wichtigsten und ältesten biogeochemischen Kreisläufe unseres Planeten. Er ist gleichzeitig eng mit dem Kohlenstoff- und Stickstoffkreislauf verzahnt, was seine Bedeutung unterstreicht. Angetrieben wird er hauptsächlich durch Sulfat-reduzierende und Schwefel-oxidierende Mikroorganismen. Auf einer globalen Skala setzen „Sulfatreduzierer“ durch ihre Aktivitäten rund ein Drittel an organischem Kohlenstoff um, der jährlich den Ozeanboden erreicht. Schwefeloxidierer konsumieren im Gegenzug rund ein Viertel des Sauerstoffs in marinen Sedimenten.

Wenn diese Ökosysteme aus dem Gleichgewicht geraten, können die Aktivitäten dieser Mikroorganismen rasch zur Sauerstoffzehrung und Akkumulation von toxischem Schwefelwasserstoff führen. Dadurch bilden sich sogenannte Todeszonen, in denen Tiere und Pflanzen nicht mehr überleben können. Dabei entsteht nicht nur ein ökonomischer Schaden, beispielsweise für die Fischerei, sondern auch ein gesellschaftlicher Schaden durch Zerstörung wichtiger Naherholungsgebiete. Daher ist es wichtig zu verstehen, welche Mikroorganismen den Schwefelkreislauf im Gleichgewicht halten und wie sie das tun.

Die jetzt publizierten Ergebnisse zeigen, dass die Artenvielfalt der Sulfat-reduzierenden Mikroorganismen sich über mindestens 27 Phyla (Stämme) erstreckt. Bisher waren Vertreter aus nur sechs Phyla bekannt. Zum Vergleich: Im Tierreich sind derzeit 40 Phyla bekannt, wobei die Wirbeltiere nur einem Phylum, den Chordata, angehören.

Multifunktionalität von Mikroorganismen entdeckt

Einen Vertreter dieser neuartigen „Sulfatreduzierer“ konnten die Forschenden dem wenig erforschten Bakterien-Phylum der Acidobakterien zuordnen und in einem Bioreaktor untersuchen.

Mit Hilfe modernster Methoden aus der Umweltmikrobiologie konnten sie nachweisen, dass diese Bakterien sowohl aus der Sulfatreduktion sowie aus der Atmung mit Sauerstoff Energie ziehen können. Diese zwei Stoffwechselwege schließen sich in allen bisher bekannten Mikroorganismen eigentlich aus.

Gleichzeitig konnten die Forschenden belegen, dass die sulfatreduzierenden Acidobakterien komplexe pflanzliche Kohlenhydrate wie Pektin abbauen können – auch das ist eine Eigenschaft, die für „Sulfatreduzierer“ bisher unbekannt war. Dadurch stellten die Forschenden das Lehrbuchwissen auf den Kopf. Sie zeigen, dass komplexe Pflanzenbestandteile unter Sauerstoffausschluss nicht – wie bisher gedacht – nur durch ein koordiniertes Zusammenspiel verschiedener Mikroorganismen abgebaut werden können, sondern auch über eine Abkürzung durch eine einzige Bakterienart.

Ebenfalls neu ist die Erkenntnis, dass diese Bakterien dazu sowohl Sulfat als auch Sauerstoff nutzen können. Wie sich die neuen Erkenntnisse auf das Zusammenspiel des Kohlenstoff- und Schwefelkreislaufs auswirken und wie sie mit klimarelevanten Prozessen verzahnt sind, untersuchen die Forschenden der DSMZ und der TU Braunschweig derzeit.

Quelle: Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH


Publikationen:

  • Dyksma S, Pester M.; Oxygen respiration and polysaccharide degradation by a sulfate-reducing acidobacterium; Nature Communications, 2023; DOI: 10.1038/s41467-023-42074-z
  • Diao M, Dyksma S, Koeksoy E, Ngugi DK, Anantharaman A, Loy A. Pester M.; Global diversity and inferred ecophysiology of microorganisms with the potential for dissimilatory sulfate/sulfite reduction; FEMS Microbiology Reviews, 2023; DOI: 10.1093/femsre/fuad058

Newsletter abonnieren

Newsletter Icon MTA Blau 250x250px

Erhalten Sie die wichtigsten MT-News und Top-Jobs bequem und kostenlos per E-Mail.

Mehr zum Thema

Mikroorganismen
Multiresistente Bakterien

Das könnte Sie auch interessieren

Aktivität der Neuronen im Gehirn
Mitochondrien
Frau mitten im Verkehrslärm