Branche
on
Zellen mittels Licht abschalten

Entwickelt wurde das lichtempfindliche Zweikomponenten-System von Dr. Franziska Schneider-Warme und Forschern aus ganz Deutschland. © Britt Schilling / Universitäts-Herzzentrum Freiburg - Bad Krozingen

| | | | |

Optogenetik: Zellen mittels Licht abschalten

Optogenetische Methoden erlauben die gezielte Beeinflussung biologischer Prozesse in einzelnen Zellen mit Licht. Molekulare Werkzeuge zum Anschalten der elektrischen Zellaktivität gibt es schon länger. Nun ist es erstmals einem Forschungskonsortium unter Beteiligung des Universitäts-Herzzentrums Freiburg · Bad Krozingen (UHZ) gelungen, ein neues optogenetisches Werkzeug zu entwickeln, mit dem elektrisch erregbare Zellen mit Licht gehemmt werden.

Für die Grundlagenforschung ist die Optogenetik von großer Bedeutung, da sie erlaubt, Zelltyp-spezifische Aufgaben im intakten Gewebe zu untersuchen. Zur Erforschung der elektrischen Steuerung komplexer Zellverbände werden beispielsweise lichtempfindliche Ionenkanäle zum „Anschalten“ elektrisch erregbarer Zellen mittels Licht verwendet.

Nützlich sind gleichermaßen optogenetische Werkzeuge zum „Ausschalten“ der elektrischen Zellaktivität. Allerdings waren die bisher dafür etablierten Proteine entweder nicht ausreichend effektiv oder hatten ungewollte Nebeneffekte.

Solche hemmenden licht-gesteuerten Moleküle herzustellen, ist jetzt einem Konsortium von Forscherinnen und Forschern des UHZ gemeinsam mit Kolleginnen und Kollegen der Humboldt-Universität zu Berlin, des Deutschen Zentrums für Neurodegenerative Erkrankungen in Berlin und der Charité Berlin, der Universität Bonn und des caesar (Center of advanced european studies and research) in Bonn, der Universität Freiburg sowie des Max-Planck-Instituts für Neurobiologie in Martinsried gelungen. Das neu entwickelte Zwei-Komponenten-System basiert auf der gleichzeitigen Herstellung eines photo-aktivierten Enzyms (PAC) und eines bakteriellen Kalium-Kanals (K).

Art des Ausschaltens

Frau am Computer © Britt Schilling / Universitäts-Herzzentrum Freiburg - Bad KrozingenDie Doktorandin Ramona Kopton überprüft im Labor die Lichtempfindlichkeit von Herzzellen, die das neu entwickelte Zweikomponentensystem enthalten. © Britt Schilling / Universitäts-Herzzentrum Freiburg – Bad Krozingen

„Wenn PAC und K gemeinsam vorliegen (PACK), genügt eine Belichtung mit einem kurzen Blaulichtblitz, um die Aktivität von Herzmuskelzellen und Nervenzellen für mehrere Sekunden zu unterdrücken“, erklärt Studienautorin Dr. Franziska Schneider-Warme, Forschungsgruppenleiterin am Institut für Experimentelle Kardiovaskuläre Medizin (IEKM) des UHZ.

Gemeinsam mit der Doktorandin Ramona Kopton hat sie die Experimente an Herzzellen durchgeführt. Durch PACK-Aktivierung können auch Bewegungsabläufe in Zebrafischen durch Licht angehalten werden.

„Das Besondere an dem neuen optogenetischen System ist, neben der Funktion als ‚Aus‘-Schalter, seine ausgesprochen hohe Lichtempfindlichkeit“, sagt Ko-Studienleiter Prof. Dr. Peter Kohl, Direktor des IEKM. Nach der Aktivierung des PACK- Systems durch wenige Photonen (Lichtquanten) verschieben Kalium-Ionen-vermittelte Ströme das Membranpotenzial in Richtung des natürlichen Ruhemembranpotentials der Zelle.

Diese Art des Ausschaltens ist energetisch sinnvoll und reduziert ungewollte Nebeneffekte. In der Zukunft möchten die Wissenschaftler ihr neues Werkzeug einsetzen, um neuartige Behandlungskonzepte zur Untersuchung fehlgeleiteter elektrischer Prozesse zu entwickeln, zum Beispiel nach Herzinfarkt. Darüber hinaus planen sie weitere Anwendungen zur Untersuchung neuronaler Netzwerke.

Quelle: Universitäts-Herzzentrum Freiburg · Bad Krozingen (UHZ)


Originalpublikation: Dietmar Schmitz et al.; Potassium channel-based optogenetic silencing; Nature Communications, 2018; DOI: 10.1038/s41467-018-07038-8

Newsletter abonnieren

Newsletter Icon MTA Blau 250x250px

Erhalten Sie die wichtigsten MT-News und Top-Jobs bequem und kostenlos per E-Mail.

Mehr zum Thema

Bakterien
Wissenschaftler mit Mikroskop

Das könnte Sie auch interessieren

Ribonukleinsäure und Proteine
T-Zellen und Krebszellen
Mikroglienzellen schädigen die Myelin-Hülle von Neuronenaxonen