Branche
on
Auf die Nachbarn kommt es an

Die Forscher veränderten die DNA des Darmbakteriums Escherichia coli und fügten ein Gen für Antibiotika-Resistenz ein. © Thanet_Khamkhlai / iStock / Thinkstock

| | | |

Genforschung: Auf die Nachbarn kommt es an

Gene sind keine Einzelgänger. Wie Perlen auf einer Kette sind sie nebeneinander auf langen DNA-Molekülen, den Chromosomen, aufgereiht. Bis jetzt war wenig darüber bekannt, wie die Position eines Genes auf einem Chromosom seine Evolution beeinflusst. Eine neue Studie von Forschern am Institut of Science and Technology Austria (IST Austria) zeigte nun, dass die Nachbarschaft eines Gens mitentscheidend ist, ob und wie sich die Aktivität des Gens in der Evolution verändert.

Von Bakterien bis hin zum Menschen hängt die Art und Weise, wie Lebewesen aussehen und funktionieren, auch davon ab, wie viel Produkte jedes Gens hergestellt werden, also wie aktiv die Gene sind. Die Aktivität eines Gens kann sich durch spontane Mutationen ändern, also durch vererbbare Veränderungen in der DNA. Diese können dazu führen, dass ein Lebewesen besser an seine Umgebung angepasst ist – oder schlechter.

Zum Beispiel kann ein Bakterium, welches mehr von einem Protein erzeugt, das ein Antibiotikum ausschleust, überleben, während seine Mitstreiter von dem Antibiotikum getötet werden. In ihrer Studie wandten Calin Guet, Professor am Institut of Science and Technology Austria (IST Austria) und Magdalena Steinrück, PhD Studentin in Guets Gruppe experimentelle Evolution an, um zu untersuchen, wie die Position eines Gens auf dem Chromosom Mutationen beeinflusst, die die Aktivität des Gens erhöhen.

Selektionsdruck auf die Bakterien

Bakterienkolonien © Magdalena SteinrückResistente Bakterienkolonien mit einem fluoreszierenden Reporterprotein erscheinen im Laufe von drei Tagen (von links nach rechts) auf Nährböden mit Tetracyclin. © Magdalena Steinrück

Die Forscher veränderten die DNA des Darmbakteriums Escherichia coli und fügten ein Gen für Antibiotika-Resistenz an verschiedenen Positionen des Bakterienchromosoms ein. Dieses Resistenzgen erlaubt es dem Bakterium, das Antibiotikum Tetracyclin aus der Zelle zu pumpen. Am Beginn des Experiments war das Gen fast vollständig ausgeschalten.

Die Forscher fügten dann den Bakterien mehr und mehr Tetracyclin zu. Dadurch übten sie einen Selektionsdruck auf die Bakterien aus, das Gen durch Mutation zu aktivieren – denn eine höhere Produktion des Resistenzgens erlaubt es den Bakterien, mehr Antibiotikum herauszupumpen, so dass sie sich vermehren und überleben. Die Autoren fanden, dass die Bakterien wesentlich öfter überlebten, wenn sich das Resistenzgen an bestimmten Stellen des Chromosoms befand im Vergleich mit anderen Stellen.

Das geschieht, weil die Nachbarschaft des Gens beeinflusst, welche Arten von aktivierenden Mutationen zur Verfügung stehen – manche Mutationen können nur vorkommen, wenn die benachbarten Gene dies zulassen. „Wir zeigen, dass Gene Mutationen und das Anpassungspotential benachbarter Gene beeinflussen können. Die Organisation von Genen auf dem Chromosom ist daher sowohl Ursache als auch Wirkung von evolutionärer Veränderung“, erklärt Calin Guet. Dieses Ergebnis hat entscheidende Bedeutung, zum Beispiel für das globale Gesundheitsproblem Antibiotikaresistenz.

Magdalena Steinrück: „Es ist vergleichbar mit der Entwicklung von Menschen: Menschen in unserer Nachbarschaft können einen großen Einfluss darauf haben, wie unsere Zukunft aussieht. Unsere Studie zeigt, dass Antibiotikaresistenz, die durch genaktivierende Mutationen entsteht, stark von der Nachbarschaft des Gens abhängt.“ Der Einfluss von chromosomaler Nachbarschaft wurde bisher nicht ausdrücklich untersucht. In Zukunft könnten solche Ergebnisse helfen, besser vorherzusagen, ob neue Antibiotikaresistenzen zu erwarten ist.

Quelle: Institute of Science and Technology Austria

Newsletter abonnieren

Newsletter Icon MTA Blau 250x250px

Erhalten Sie die wichtigsten MT-News und Top-Jobs bequem und kostenlos per E-Mail.

Mehr zum Thema

Zellteilung
DNA

Das könnte Sie auch interessieren

Darmkrebs
Darmmikrobiom
Zellteilung