Ein hübsches, buntes Gebilde auf dem Schreibtisch der Wissenschaftler, in trauter Eintracht mit einer Stoff-Fruchtfliege, ist das anschauliche Symbol bahnbrechender Erkenntnisse für die Genetiker. „Es ist das Modell eines Proteinbausteins: dem sogenannten Repressorkomplex, der bei der Zellkommunikation eine zentrale Rolle spielt“, erklärt Dr. Dieter Maier vom Fachgebiet Allgemeine Genetik an der Universität Hohenheim.
„Zusammen mit den Kollegen an der Universität Cincinnati konnten wir seine Struktur nun entschlüsseln und die Funktionen in vivo, also bei lebenden Fruchtfliegen, belegen.“ Die Rede ist vom sogenannten Notch Signalweg. Er ist in allen höheren Tieren vorhanden und wird bei der Zellkommunikation benötigt, um die Differenzierung von Zellen zu steuern.
„Wenn dieser Signalweg gestört ist führt das zu Erbkrankheiten, die vor allem Herz und Skelett betreffen, zu Krebserkrankungen und Leukämien“, skizziert Prof. Dr. Anette Preiss, die das Fachgebiet Allgemeine Genetik an der Universität Hohenheim leitet.
Schlüssel zur Steuerung des Signalweges
„Der Notch Signalweg funktioniert vereinfacht wie ein Ein- und Ausschalter“, erklärt Dr. Maier den Prozess, der mit vielen ungewöhnlichen Namen einhergeht.
„Den Einschalter kennt man schon recht gut: Wenn ein Protein-Bereich namens ‚Suppressor of Hairless‘ an die DNA anschließt, wird Notch aktiviert. Aber ‚Suppressor of Hairless‘ wird zum Ausschalter, sobald das Protein ‚Hairless‘ daran andockt. Über die Strukturen, die diesem Komplex zugrunde liegen, wusste man bisher kaum etwas.“
Jetzt gelang es den amerikanischen Kooperationspartnern um Prof. Dr. Rhett A. Kovall, mittels Röntgenstrukturanalyse die Struktur dieses Proteinkomplexes zu identifizieren. „Das gibt uns neue Werkzeuge, um den Signalweg zu regulieren“, legt Prof. Dr. Preiss dar.
„Wenn wir die Struktur kennen, können wir neue Medikamente entwickeln. Man könnte z.B. kleine Moleküle bauen, die in die Zellen eindringen, sich dort anstelle von ‚Hairless‘ an das Protein binden und das Notch Signal ausschalten.“
Genetische Veränderungen ermöglichen Steuerung
Die Strukturanalyse zeigte eine bisher unbekannte Proteinbindung: „Die Bindung von ‚Hairless‘ an den ‚Suppressor of Hairless‘ ist sehr stark – um sie einzugehen, muss ‚Suppressor of Hairless‘ seine Struktur stark verändern, so dass ‚Hairless‘ tief in das Protein eindringen kann“, so Dr. Maier.
Der Genetiker fand zusammen mit Dr. Heiko Praxenthaler in dessen Doktorarbeit einen weiteren Ansatz: „Wir haben die Proteine an mehreren Stellen gentechnisch so verändert, dass die Bildung des Ausschalters, aber nicht die des Anschalters gestört wird“, erläutert er die Vorgehensweise der Forscher. „Damit sind wir in der Lage auch das Signal zu regulieren.“
Versuche mit Fruchtfliegen belegen neue Erkenntnisse
Dass das tatsächlich funktioniert, haben die Wissenschaftler anhand der Fruchtfliege Drosophila melanogaster, einem bekannten Modellorganismus, demonstriert. „Die mutierte Drosophila-DNA haben wir vermehrt und in die Fliegeneier mikroinjiziert. So konnten wir genetisch veränderte Fruchtfliegen heranziehen.“
Bei diesen genveränderten Tieren gelang es den Forschern dann, in den Mechanismus einzugreifen. „Anhand bestimmter Merkmale, beispielsweise der Ausprägung und Größe der Augen, konnten wir erkennen, dass wir nun den Notch Signalweg steuern können“, freut sich Dr. Maier.
Bisher wurden Krankheiten, die auf einem fehlerhaften Notch Signalweg basieren, in der Regel über Antikörper behandelt. Doch langfristig, so die Hoffnung der Forscher, könnte die Entschlüsselung dieser Vorgänge in der Therapie Verwendung finden – mit einer direkten Steuerung des Signalweges.
Quelle: Universität Hohenheim
Originalpublikation: Zhenyu Yuan et al.; Structure and Function of the Su(H)-Hairless Repressor Complex, the Major Antagonist of Notch Signaling in Drosophila melanogaster; PLOS Biology, 2016; doi: 10.1371/journal.pbio.1002509