Search
Generic filters
Branche
on
Langzeitüberleben bei Eierstockkrebs sichern

Mit mehr als 42 000 Todesfällen pro Jahr ist Eierstockkrebs die schwerwiegendste gynäkologische Erkrankung in Europa. © Shidlovski / iStock / Getty Images Plus

| | | | |

Proteinforschung: Langzeitüberleben bei Eierstockkrebs sichern

Die Diagnose Eierstockkrebs gleicht noch heute einem Todesurteil. Nur eine von sechs Patientinnen überlebt mehr als 10 Jahre nach ihrer Erstdiagnose. Ein internationales Forscherteam aus München, Chicago und Kopenhagen hat nun einen molekularen Mechanismus entdeckt, der beim aggressiven Eierstockkrebs ein langfristiges Überleben ermöglicht.

Eierstockkrebs ist eine hoch aggressive Krankheit. Nur eine von sechs Patientinnen überlebt mehr als zehn Jahre, während die Mehrheit der Patientinnen innerhalb der ersten zwei Jahre nach der Diagnose verstirbt. Eine der Hauptursache hierfür ist das späte Erkennen der Erkrankung, denn dies geschieht meist erst, wenn der unbemerkt gewachsene Ausgangstumor von den Eierstöcken in umliegende Organe gestreut hat.

Standardmäßig wird der Krebs dann so gut wie möglich operativ entfernt gefolgt von einer platinbasierten Chemotherapie. „Dies führt zwar bei der Mehrzahl der Patientinnen zu einer sofortigen Besserung, jedoch sind die therapeutischen Wirkungen der Therapie nur selten dauerhaft“, erklärt Prof. Dr. Ernst Lengyel von der Universität Chicago, einer der weltweit führenden gynäkologischen Onkologen.

Mit mehr als 42 000 Todesfällen pro Jahr ist Eierstockkrebs die schwerwiegendste gynäkologische Erkrankung in Europa. Wissenschaftler des Max-Planck-Instituts (MPI) für Biochemie in Martinsried bei München, haben nun gemeinsam mit Forschern aus Chicago und Kopenhagen die molekularen Grundlagen für das Langzeitüberleben von Patienten untersucht.

Bauanleitung für Proteine

„Erst wenn wir die molekularen Ursachen und die Unterschiede zwischen Patientinnen, die gut oder schlecht auf die Therapie reagieren, verstehen, werden wir die Behandlung von Eierstockkrebs in der Klinik verbessern und auch den Weg für personalisiertere Behandlungsoptionen in der Zukunft ebnen", erklärt Lengyel, welcher die Studie, gemeinsam mit Prof. Dr. Matthias Mann, einem Pionier und führenden Wissenschaftler auf dem Gebiet der massenspektrometrischen Proteomik, initiiert hat. Mann ist Direktor am MPI für Biochemie und Leiter der Abteilung „Proteomics und Signaltransduktion".

Die DNS in unseren Zellen ist die Bauanleitung für Proteine, molekularen Maschinen, die die Hauptakteure der meisten biologischen Prozesse sind. Dazu gehören zum Beispiel Proteine für den Stoffwechsel oder die zelluläre Signalgebung.

In den letzten Jahren haben Mann und sein Team die Technologie der Massenspektrometrie für die Proteinanalyse für den klinischen Einsatz entwickelt und verfeinert. „Mit der Massenspektrometrie können wir zum ersten Mal fast alle Proteine, das Proteom, im Tumorgewebe der Patienten identifizieren", sagt Mann.

Blick in die Vergangenheit

„Unsere hochsensitiven Methoden ermöglichen es nun, Tausende von Proteinen gleichzeitig zu analysieren und anhand der Gewebeproben nach den für die Krankheit kritischen Proteinen zu suchen". Für Ihre Analyse nutzten die Forscher von Prof. Lengyel und seinem Team archiviertes und über viele Jahre gesammeltes Biobankmaterial der Universität Chicago, das meist aus der Erstoperation der Patientinnen stammt.

„Auf diese Weise können wir in gewisser Weise in die Vergangenheit zurückblicken, da wir genau wissen, wie die Patientin auf eine Chemotherapie reagiert hat", sagt Dr. Fabian Coscia, Erstautor der Studie und ehemaliger Doktorand bei Matthias Mann und jetzt Postdoktorand in Kopenhagen.

Mithilfe der massenspektroskopischen Analyse entdeckten die Forscher ein weitestgehend unbekanntes Protein namens CT45, das bei Langzeitüberlebenden stark erhöht war. Anschließende Tests im Labor haben den CT45-Befund bestätigt. Wurden Krebszellen ohne CT45 das Protein CT45 zugeführt, starben die Zellen deutlich schneller in der Chemotherapie.

Anleitungen sind biochemisch versiegelt

Aber warum produziert der Krebs das Protein CT45, wenn es nach der Chemotherapie das eigene Abtöten fördert? „Die einfache Antwort darauf ist, dass der Krebs das noch nicht weiß, dass er mit einer Platin-basierten Chemotherapie behandelt wird", erklärt Coscia.

„Die Proben, die wir mit Proteomik analysiert hatten, wurden vor der Chemotherapie entnommen. Eine Anpassung des Tumors an die Behandlung hat also noch nicht stattgefunden. Eine ähnliche Beobachtung machten wir in Laboruntersuchungen mit isolierten Krebszellen“. Gesunde Zellen produzieren normalerweise nur Proteine, die auch für die speziellen Aufgaben in der Zelle gebraucht werden, zum Beispiel eierstocktypische Aufgaben.

Obwohl die Bauanleitung für Proteine, die DNA, in allen Zellen gleich ist, werden nicht alle Proteine produziert. Die meisten Anleitungen sind biochemisch versiegelt, so das also nur auf das eierstockspezifische „Programm“, also DNA, zugegriffen wird. Sobald eine Zelle zur Krebszelle wird, kann diese Versieglung, die sogenannte Methylierung, allerdings verloren gehen und oftmals werden dann Proteine wie CT45 doch produziert.

Große Fortschritte

Aktuell gibt es erste Medikamente in klinischen Studien, die genau diese demethylierenden Eigenschaften haben. Unsere Experimente in der Zellkultur weisen darauf hin, dass durch diese sogenannten DNA-de-methylierenden Arzneimittel die Wirksamkeit der Chemotherapie verbessert werden kann.

„Wir vermuten, dass CT45 hierbei eine tragende Rolle einnimmt da es nach der Gabe des Arzneimittels zu den am stärksten gebildeten Proteinen im Tumor gehört. Das gibt uns Hoffnung, dass Patientinnen, die das Protein nicht im Tumor haben, immer noch von einer Kombinationschemotherapie profitieren könnten", sagt Dr. Marion Curtis, Postdoktorandin im Lengyel-Labor und letzte Autorin der Studie.

Die Forscher haben große Fortschritte beim Verständnis der CT45-Funktion gemacht. Dies gibt Hoffnung für die Entwicklung neuer und gezielterer Therapieansätze.

„Wir haben Hinweise, dass die tumorspezifische Expression von CT45 das Immunsystem des Patienten stimuliert, um den Krebs zu bekämpfen, wie es bei einem Virus oder einer bakteriell infizierten Zelle der Fall wäre. Unser langfristiges Ziel ist es, auf der Grundlage dieser spannenden neuen Erkenntnisse neue Wege zur Verbesserung der Behandlungsergebnisse zu finden", fasst Prof. Lengyel zusammen.

Quelle: Max-Planck-Institut für Biochemie


Originalpublikation: M. Curtis et al.; Multi-level proteomics identifies CT45 as a chemosensitivity mediator and immunotherapy target in ovarian cancer; Cell, 2018; DOI: 10.1016/j.cell.2018.08.065

Newsletter abonnieren

Newsletter Icon MTA Blau 250x250px

Erhalten Sie die wichtigsten MTA-News und Top-Jobs bequem und kostenlos per E-Mail.

Mehr zum Thema

Tumor im Gehirn.
Viren

Das könnte Sie auch interessieren

Tumor im Gehirn.
DNA
Menschliches Verdauungssystem