Branche
on
Auf- und Abbau von Proteinkomplexen untersucht

Wie Puzzleteile, die exakt ineinander passen, können sich die Proteine zusammenfügen, um einen Komplex zu bilden. © Galina Shafran / iStock / Getty Images Plus

| | | |

Stabilitaxis: Auf- und Abbau von Proteinkomplexen untersucht

In einer neuen Forschungsarbeit zeigen Forscher des Max-Planck-Instituts für Dynamik und Selbstorganisation, der Universität Oxford und der Sorbonne Université, wie die Wirkung des Auf- und Abbaus von Proteinkomplexen an einem „Sweet Spot" die Proteinfunktion begünstigen kann.

Wenn ein Protein seine Funktion nur innerhalb eines Proteinkomplexes erfüllen kann, was ist dann der Vorteil dessen Auseinandergehens? Dies ist die Schlüsselfrage, die Jaime Agudo-Canalejo, Pierre Illien und Ramin Golestanian in dieser Studie untersucht haben. Die Forscher haben festgestellt, dass Proteine, um ihre Funktion erfüllen zu können, zuerst durch stochastische Bewegung ihr Ziel finden müssen.

Im Falle eines Enzyms, zum Beispiel, das die chemische Umwandlung eines Substratmoleküls in ein Produktmolekül katalysiert, muss das Enzym zuvor das Substrat finden. „Die grundlegende Beobachtung zeigt, dass die einzelnen Proteine, die einen Komplex bilden, sich allein schneller bewegen können, als in einem sperrigen Verbund. Daher kann die Zeit, bis sie ihr Ziel erreichen, kürzer sein, wenn sie unabhängig sind. Ihre Funktion können sie jedoch nur dann erfüllen, wenn die Proteine, sobald sie sich in der Nähe des Ziels befinden, den benötigten Komplex wieder schnell genug bilden“, sagt Ramin Golestanian, Direktor der Abteilung Physik lebender Materie am Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS).

Um die Wechselwirkung zwischen diesen beiden Effekten zu verstehen, haben die Forscher ein mathematisches Modell entwickelt, das die Diffusion der Proteine, den Auf- und Abbau von Proteinkomplexen sowie die Reaktion mit den Zielmolekülen berücksichtigt. Überraschenderweise fanden sie heraus, dass ein „Sweet Spot“ in der Proteinkonzentration existiert.

Proteinmenge muss genau richtig sein

„Wenn es zu wenige Proteine gibt, befinden sie sich größtenteils im dissoziierten Zustand und sind somit schnell, aber nicht funktionsfähig. Gibt es zu viele Proteine, bilden die meisten von ihnen Proteinkomplexe und sind daher funktionsfähig, aber langsam. Bei mittleren Konzentrationen im ‚Sweet Spot‘ bauen sich Proteinkomplexe hingegen oft genug ab, um eine schnelle Bewegung zu ermöglichen, formen sich aber oft genug wieder, um funktionsfähig zu sein", erklärt Jaime Agudo-Canalejo, der Erstautor der Studie.

„Die Proteinmenge muss ‚gerade richtig‘ sein, eben ein gesundes Mittelmaß", fügt er hinzu. Die Bedingungen im Zellinneren sind alles andere als homogen und bestimmte Moleküle können zu einem gegebenen Zeitpunkt in verschiedenen Bereichen der Zelle mehr oder weniger reichlich vorhanden sein.

Insbesondere Inhibitormoleküle, die den Abbau von Proteinkomplexen fördern, können sich in einer bestimmten Region konzentrieren.

Spannender Aspekt der Forschungsarbeit

Wie ist in einer solchen Situation die erwartete Verteilung von Proteinkomplexen innerhalb der Zelle? Mit Hilfe ihres mathematischen Modells haben die Forscher herausgefunden, dass die Proteine dazu neigen, sich spontan in den Regionen anzusammeln, in denen ihre Komplexform am stabilsten ist. Dieses eindeutig aus dem Nichtgleichgewichtszustand resultierende Phänomen, haben sie als „Stabilitaxis" bezeichnet.

Golestanian argumentiert: „Stabilitaxis könnte ein generischer Mechanismus sein, den Zellen nutzen, um als Reaktion auf Gradienten in der Konzentration eines anderen Moleküls, räumliche Muster in der Verteilung von Proteinen zu erzeugen.“ Agudo-Canalejo ergänzt: „Der gleiche Mechanismus könnte bei der Entwicklung von synthetischen Materialien, die auf externe Stimuli reagieren, genutzt werden, zum Beispiel durch Verwendung von Kolloiden, die mit lichtaktivierten Linkern beschichtet sind."

Dieses erachten die Autoren als einen besonders spannenden Aspekt dieser Forschungsarbeit: sie ermöglicht es ihnen, sowohl komplizierte Mechanismen bei der Selbstorganisation in biologischen Systemen aufzudecken, als auch Strategien für technische Anwendungen anzubieten.

Quelle: Max-Planck-Institut für Dynamik und Selbstorganisation

Newsletter abonnieren

Newsletter Icon MTA Blau 250x250px

Erhalten Sie die wichtigsten MT-News und Top-Jobs bequem und kostenlos per E-Mail.

Mehr zum Thema

Zerstörung einer Zelle
Ribonukleinsäure und Proteine

Das könnte Sie auch interessieren

SARS-CoV-2-Virus
Hepatitis-Virus und Leber
Leukämie