Branche
on
Informationsaustausch am Straßenrand

Axone (gruen) der Nervenzellen der Netzhaut lesen beim Wachstum mit molekularen Antennen (magenta) an ihrem Ende chemische Signale, die zum Ziel führen. © KIT / Weth

| | | |

Nervenzellen: Informationsaustausch am Straßenrand

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500 000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der Verbindungen keine Verwicklungen gibt, steuert ein Navigationssystem das Wachstum der Nervenfasern. Doch auf welche Weise genau finden die Nervenfasern während des Wachstums ihr Zielgebiet?

„Es ist ähnlich wie beim autonomen Fahren im Straßenverkehr“, erklärt Franco Weth von der Abteilung Zell- und Neurobiologie des Zoologischen Instituts. Dabei tauschen Fahrzeuge sowohl mit Signalgebern am Straßenrand Informationen aus, als auch untereinander, um ans Ziel zu finden. Bei Nervenfasern dienen Sensormoleküle an ihren Enden als Antennen.

Mit ihnen empfangen sie Lenkungssignale in Gestalt von Proteinen, die auf dem Weg und im Zielgebiet positioniert sind, aber auch auf anderen Fasern, die den Weg kreuzen. Im Ziel angekommen bilden die Axone Verknüpfungen mit anderen Nervenzellen, die Synapsen.

Eine überlebensnotwendige Fähigkeit

Als Beispiel für eine solche Verdrahtung nennt Weth die Verbindung zwischen Netzhaut und Gehirn, wobei nahezu eine Million Nervenfasern durch den Sehnerv in die Sehzentren gelangen. Genetisch vorprogrammiertes „neuronales Hardwiring“ sorgt dafür, dass die Bildpunkte dort wie in einer Projektion eins zu eins abgebildet werden und versetzt ein Neugeborenes so erst in die Lage überhaupt ein Bild sehen und verarbeiten zu können.

Eine überlebensnotwendige Fähigkeit, die sich durch die Evolution unserer Spezies herausgebildet hat und nicht durch eigene Erfahrung erworben werden muss. „Durch Lernen wird nur eine Minderheit der Synapsen unseres Gehirns verdrahtet“, stellt Weth klar. Erstaunlich: Während der Reise werden die Faserantennen zunehmend unempfindlicher für die eingehenden Signale ihres Protein-Navigationssystems.

„Dabei müssen die Informationen doch präzise ausgelesen werden, sonst finden die Fasern ihre Zieladresse nicht“, wunderten sich Weth und seine Forscherkollegen. Die Lösung: „Die Antennen werden zwar tatsächlich für alle Typen der sie lenkenden Signal unempfänglicher, aber sie bewahren dabei erstaunlicherweise strikt das Verhältnis der Signalstärken zueinander“, so Weth.

Abstumpfungsprozess bei der Lenkung

Der Zielort ist letztlich nicht durch die Stärke eines Signals, sondern durch ein bestimmtes Verhältnis mehrerer Signale gekennzeichnet. Durch diese raffinierte Kopplung der Antennenempfindlichkeiten, meistert das axonale Navigationssystem den Konflikt zwischen Verlässlichkeit und Veränderlichkeit der Signale.

Diese Art der gekoppelten Signalregulation ist in der Biologie höchst ungewöhnlich. Denn: „Auch wenn Sie den Geruch des Parfums Ihres Gegenüber schnell nicht mehr bemerken, heißt das noch lange nicht, dass sie auch den Geruch des Kaffees, den sie gerade trinken, weniger intensiv wahrnähmen. Genau das aber passiert hier.“ Warum dieser der naiven Erwartung – ein starkes Signal führt sicher ans Ziel – zuwiderlaufende Abstumpfungsprozess bei der Lenkung der Axone stattfindet, wissen die Forscher noch nicht.

„Wir vermuten, es handelt sich letztlich um eine energiesparende Strategie, denn Signalübertragung verbraucht Energie“, sagt Weth. Die Natur strebe eigentlich nach Unordnung, „und Ordnung herzustellen kostet Energie. Das kennen Sie von zu Hause. Nichts in der Biologie ist geordneter als die Verschaltungen unseres Gehirns. Nur wenn die Natur den Aufwand bei seiner Verdrahtung so gering wie möglich hält, kann sie die Höchstleistung erbringen, die nötig ist, uns mit diesem „Kognitionscomputer“ auszustatten“.

Mit ihren Erkenntnissen tragen die Forscher letztlich auch zum Verständnis von Krankheiten bei, die durch Fehler bei der vorgeburtlichen Verdrahtung entstehen. Dazu gehören etwa das Tourette-Syndrom, Autismus oder Schizophrenie.

Quelle: Karlsruher Institut für Technologie (KIT)

Newsletter abonnieren

Newsletter Icon MTA Blau 250x250px

Erhalten Sie die wichtigsten MT-News und Top-Jobs bequem und kostenlos per E-Mail.

Mehr zum Thema

Zellstruktur
Lunge

Das könnte Sie auch interessieren

Darmkrebs
Darmmikrobiom
Zellteilung