Branche
on
Wenn das Smartphone zum Sicherheitsrisiko wird

Durch Dendriten kann der Smartphone-Akku zur Gefahr werden. © Yura Fresh / Unsplash.com

| | | |

Gefahr in der Tasche: Wenn das Smartphone zum Sicherheitsrisiko wird

Nicht nur bei Jugendlichen stehen Smartphones und Tablet-PCs wieder ganz oben auf der Weihnachtswunschliste. Dabei kann gerade von den häufig in mobilen Endgeräten verwendeten Lithium-Ionen-Akkus ein Sicherheitsrisiko ausgehen. Nun haben Forscher in Theorie und Experiment herausgefunden, warum einige Akkus betroffen sind und andere nicht.

Mikroskopische Aufnahme Dendriten © Mönig / Kramer, HIU / KITLichtmikroskopische Aufnahme eines wachsenden Dendriten aus Lithium während der elektrochemischen Abscheidung des Metalls aus einer Elektrolytlösung. © Mönig / Kramer, HIU / KIT

In Flammen stehende Laptops oder Smartphones sind oft auf so genannte Dendriten in Batterien zurückzuführen. Diese astartigen Auswüchse an der negativen Elektrode („Anode“) können Kurzschlüsse auslösen, die zum Batteriebrand führen.

Warum die häufig in mobilen Endgeräten eingesetzten Lithium-Ionen-Speichersysteme zur Dendritenbildung neigen, magnesiumbasierte Batterien jedoch zum Beispiel nicht, haben Ulmer Forscher um Professor Axel Groß und Markus Jäckle untersucht. Anhand von Simulationen an Supercomputern konnten sie erstmals Metalleigenschaften identifizieren, die das Dendritenwachstum beeinflussen.

Auf dieser Basis lassen sich Designempfehlungen formulieren, die bei der Entwicklung zuverlässiger neuer Speichersysteme helfen, nicht nur für Smartphones und Laptops, sondern auch im Hinblick auf globale Herausforderungen wie die Energiewende und die zunehmende Elektromobilität.

Kurzschlüsse beim Wiederaufladen

Lichtmikroskopische Aufnahme Dendriten © Mönig / Kramer, HIU / KITLichtmikroskopische Aufnahme eines wachsenden Dendriten aus Lithium während der elektrochemischen Abscheidung des Metalls aus einer Elektrolytlösung. © Mönig / Kramer, HIU / KIT

Vor einiger Zeit haben explodierende Akkus eines bekannten Mobiltelefon-Herstellers Schlagzeilen gemacht. Solche Kurzschlüsse werden oft durch Dendriten verursacht, die beim Wiederaufladen der Batterie zu einem Materialverlust an der Anodenseite führen. Das Sicherheitsrisiko geht aber vor allem von Kurzschlüssen aus, bei denen in kurzer Zeit viel Energie frei wird, und die im Zusammenspiel mit entflammbaren Elektrolyten eben jene Batteriebrände auslösen.

Bisher glauben viele Forschergruppen, dass die Zusammensetzung der Oberflächenschicht auf der negativen Elektrode und des Elektrolyten ursächlich für die Dendritenbildung ist. Allerdings deuten neue experimentelle Forschungsergebnisse aus dem Helmholtz-Institut Ulm (HIU), einer gemeinsamen Einrichtung des Karlsruher Instituts für Technologie (KIT), der Universität Ulm und ihrer Partner, in eine andere Richtung: Demnach scheint eine dem Metall innenwohnende Eigenschaft die astartigen Auswüchse zu bedingen.

Dabei haben die Autoren die so genannten Selbstdiffusionsbarrieren verschiedener Metalle im Blick, die in Akkus verwendet werden. Diese Barrieren sind dafür verantwortlich, wie gleichmäßig sich Metallatome beim Wiederaufladen der Batterie, nach der Abscheidung, auf der Anoden-Oberfläche verteilen.

„Wir haben uns gefragt, ob es eine einfache physikalisch-chemische Materialeigenschaft, einen so genannten Deskriptor gibt, mit dessen Hilfe man vorhersagen kann, ob metallische Anoden in Batterien zum Dendritenwachstum neigen. Dabei sind wir davon ausgegangen, dass die Beschaffenheit der Anoden-Oberfläche, ob rau oder glatt, einen erheblichen Einfluss auf die Dendritenbildung hat“, sagt Professor Axel Groß, Leiter des Instituts für Theoretische Chemie an der Uni Ulm sowie Gruppenleiter am HIU.

Wichtige Rolle der Selbstdiffusionsbarrieren

Schematische Darstellung des Dendritenwachstums © Gabriele StautnerSchematische Darstellung des Dendritenwachstums in Batterien. Links: Glatte Anodenoberfläche und daher keine Dendritenbildung. Rechts: Raue Anodenoberfläche mit Dendritenbildung und dem Gefahr eines Batteriebrands © Gabriele Stautner

Ein solcher Deskriptor wäre hochrelevant, denn weltweit suchen Forschende nach zuverlässigen Nachfolgesystemen für Lithium-Ionen-Batterien. Alternativen zum immer seltener werdenden Lithium, das in Energiespeichern meist in Kombination mit dem ebenfalls kritischen Übergangsmetall Kobalt verwendet wird, reichen von Aluminium, Natrium und Magnesium bis zu Zink.

Für ihre Publikation haben die Wissenschaftler um Professor Axel Groß Forschungsergebnisse aus Theorie sowie Experiment kombiniert: Anhand von Simulationen konnten sie die experimentellen Daten aus dem HIU und von anderen Einrichtungen im Detail nachvollziehen. Mithilfe der Supercomputer JUSTUS (Ulm) und SUPERMUC aus dem Leibniz-Rechenzentrum in München berechnete die Gruppe Diffusionsbarrieren und Eigenschaften unterschiedlicher, in Batterien verwendeter Materialien auf atomarer Ebene.

Die Ergebnisse ihrer Berechnungen bestätigen die wichtige Rolle der Selbstdiffusionsbarrieren: Beim Wiederaufladen der Batterie, nach dem Abscheiden, verteilen sich Metallatome äußerst gleichmäßig, wenn die Diffusionsbarrieren niedrig sind. Entsprechende Materialien, beispielsweise Magnesium oder Aluminium, zeigen dadurch kein Dendritenwachstum.

Designprinzipien ableiten

Im Fall von hohen Diffusionsbarrieren wie bei Lithium- und Natrium-Speichern bilden sich jedoch raue Oberflächen, die nadelartige, dendritische Strukturen begünstigen. Demnach erlaubt die Höhe der Diffusionsbarrieren als Deskriptor Vorhersagen darüber, ob metallische Anoden in Batterien zu Dendritenwachstum neigen oder nicht. Aus dem Beitrag der Forschenden lässt sich zwar noch keine vollständige Theorie des Dendritenwachstums ableiten, wohl aber Designprinzipien für sichere Batterien.

„Unsere Ergebnisse lassen erwarten, dass wir Dendritenwachstum durch eine Verringerung der Höhe von Selbstdiffusionsbarrieren gezielt verhindern können. Dies gelingt zum Beispiel durch die Modifikation der Anoden-Oberfläche. Eine andere Möglichkeit wäre es, von vornherein Anodenmaterialien mit niedrigen Selbstdiffusionsbarrieren auszuwählen, die aufgrund dieser Eigenschaft nicht zur Dendritenbildung neigen“, erklärt Erstautor und HIU-Doktorand Markus Jäckle.

Quelle: Universität Ulm


Originalpublikation: Markus Jäckle et al., Self-diffusion barriers: possible descriptors for dendrite growth in batteries?, Energy & Environmental Science, 2018; DOI: 10.1039/c8ee01448e

Newsletter abonnieren

Newsletter Icon MTA Blau 250x250px

Erhalten Sie die wichtigsten MT-News und Top-Jobs bequem und kostenlos per E-Mail.

Mehr zum Thema

Zwei Laboranten im Labor
Blutprobe

Das könnte Sie auch interessieren

Corona-Virus im Gehirn
Kette von Aminosäuren (Protein)
Dendritische Zellen aktivieren T-Zellen